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Abstract. We explore the extension of the notion of rational closure to logics

lacking the finite model property, considering the logic SHIQ. We provide a

semantic characterization of rational closure in SHIQ in terms of a preferential

semantics, based on a finite rank characterization of minimal models. We show

that the rational closure of a KB can be computed in EXPTIME based on a polyno-

mial encoding of the rational extension of SHIQ into entailment in SHIQ. We

discuss the extension of rational closure to more expressive description logics.

1 Introduction

A lot of work has been done in order to extend the basic formalism of Description Log-

ics (DLs) with nonmonotonic reasoning features [38, 1, 10, 12, 15, 18, 30, 4, 16, 3, 6, 37,

33, 31, 5, 2]. The purpose of these extensions is to allow reasoning about prototypical

properties of individuals or classes of individuals, as well as combining DLs with non-

monotonic rule-based languages, such as Datalog under the answer set semantics. The

most well known semantics for nonmonotonic reasoning have been used to the purpose:

default logic [1], circumscription [3], Lifschitz’s nonmonotonic logic MKNF [10, 37,

31], ASP [12, 11], Datalog +/- [26], preferential reasoning [15, 4, 5, 18], rational clo-

sure [6, 9, 5, 21].

The interest of rational closure for DLs is that it provides a significant and reason-

able skeptical nonmonotonic inference mechanism, while keeping the same complexity

as the underlying logic. In this work, we focus on rational closure for the description

logic SHIQ [29]. In particular, we define the rational closure for SHIQ, building

on the notion of rational closure proposed by Lehmann and Magidor [35], as we have

done for ALC [17, 21]. Our construction differs from the one introduced by Casini

and Straccia [6] for ALC, which is more similar to the construction by Freund [13]

for propositional logic, as well as from the one introduced in [5]. Both [6] and [5] ex-

ploit (in different ways) the materialization of the knowledge base, while our notion of

exceptionality directly exploits preferential entailment.

We provide a semantic characterization of rational closure for SHIQ in terms of

a preferential semantics, by generalizing to SHIQ the results for rational closure for

ALC presented in [17]. The generalization is not trivial since, differently from ALC ,

SHIQ lacks the finite model property [29]. Our construction exploits an extension of

SHIQ with a typicality operator T, that selects the most typical instances of a concept



C, giving rise to the new concept T(C). We define a minimal model semantics and a

notion of minimal entailment for the resulting logic, SHIQR
T, and we show that the

inclusions belonging to the rational closure of a TBox are those minimally entailed by

the TBox, when restricting to canonical models. This result exploits a characterization

of minimal models, showing that we can restrict to (possibly infinite) models with finite

ranks. We also show that the rational closure of a TBox can be computed by exploiting

a linear encoding of SHIQR
T into SHIQ, and that the problem of deciding if an

inclusion is in the rational closure of a TBox is in EXPTIME.

The linear encoding of SHIQR
T into SHIQ is obtained by proving that rational

entailment is equivalent to preferential entailment for arbitrary queries (provided the

ABox does not contain typicality assertions). The same result also holds for all the de-

scription logics from ALC to SROIQ. This provides an upper bound on the complex-

ity of rational entailment for these logics as well as a way to compute subsumption and

instance checking under the rational semantics and to construct the rational closure also

for logics more expressive than SHIQ. However, as we will see, the meaning of the

rational closure for expressive logics including nominals can be sometimes problematic

and we discuss the issue in Section 7.

This paper is an extended version of the work presented in [20, 19].

2 A nonmonotonic extension of SHIQ

In this section, following the approach in [16, 18], we introduce an extension of SHIQ
[29] with a typicality operator T in order to express typical inclusions, obtaining the

logic SHIQR
T. Following [16, 18], we introduce a typicality operator T to express

typicality inclusions. The idea is to allow concepts of the form T(C), whose intuitive

meaning is that T(C) selects the typical instances of a concept C. We can therefore

distinguish between the properties that hold for all instances of C (C ⊑ D), and those

that only hold for the typical instances of C (T(C) ⊑ D). The semantic of the typicality

operator will be defined in terms of rational models [35]. We consider an alphabet of

concept names C, role names R, transitive roles R+ ⊆ R, and individual constants O.

Given A ∈ C, R ∈ R, and n ∈ N we define:

CR := A | ⊤ | ⊥ | ¬CR | CR ⊓ CR | CR ⊔ CR | ∀S.CR | ∃S.CR | (≥
nS.CR) | (≤ nS.CR)
CL := CR | T(CR)
S := R | R−

As usual, we assume that transitive roles cannot be used in number restrictions [29].

A knowledge base (KB) is a pair K = (T ,A), where the TBox T contains a finite

set of concept inclusions CL ⊑ CR and a finite set of role inclusions R ⊑ S and

the ABox A contains a finite set of assertions of the form CR(a) and S(a, b), with

a, b ∈ O. In the following we will call non-extended the concepts CR in which the

T operator does not occur. Differently from [21], here we assume that ABox does not

contain typicality assertions T(C)(a). The reason for this limitation is explained after

Proposition 3. A similar motivation holds for limiting the occurrences of T to the left

hand side of concept inclusions, in agreement with all the other definitions of rational



closure for DLs which deal with defeasible inclusions [6, 9, 5, 21] stating that “normally

the C’s are D’s”.

Following the preferential approaches in [16, 4, 21], a semantics for the extended

language is defined, adding to interpretations in SHIQ [29] a preference relation < on

the domain to evaluate defeasible inclusions. < is intended to compare the “typicality”

of domain elements, that is to say, x < y means that x is more typical than y. The

typical instances of a concept C (the instances of T(C)) are the instances x of C that

are minimal with respect to the preference relation < (so that there is no other instance

of C preferred to x). As here we consider a rational extension of SHIQ, we assume

the preference relation < to be modular as in [4, 21].

In the following definition we will use the notions of modular and well-founded

relations. An irreflexive and transitive relation < is: modular if, for all x, y, z ∈ ∆, if

x < y then x < z or z < y; it is well-founded if, for all S ⊆ ∆, for all x ∈ S, either

x ∈ min<(S) or ∃y ∈ min<(S) such that y < x4.

Definition 1 (Interpretations in SHIQR
T). A SHIQR

T interpretation M is any

structure 〈∆,<, I〉 where: ∆ is a domain; < is an irreflexive, transitive, well-founded,

and modular relation over ∆; I is a function that maps: each concept A ∈ C to a set

AI ⊆ ∆; each individual name a ∈ O to an element aI ∈ ∆; and each role R ∈ R to

a relation RI ⊆ ∆×∆ such that, for all P ∈ R and for all R ∈ R+,

(x, y) ∈ P I iff (y, x) ∈ (P−)I

if (x, y) ∈ RI and (y, z) ∈ RI then (x, z) ∈ RI

The interpretation function ·I is extended to complex concepts as usual:

⊤I = ∆; ⊥I = ∅;

(C ⊓D)I= CI ∩DI ;

(C ⊔D)I= CI ∪DI ;

(¬C)I= ∆− CI ;

(∃R.C)I= {x ∈ ∆ | there is a y ∈ ∆ with (x, y) ∈ RI and y ∈ CI};

(∀R.C)I= {x ∈ ∆ | for all y ∈ ∆, if (x, y) ∈ RI , then y ∈ CI};

(≥ nR.C)I= {x ∈ ∆ | ♯{y ∈ ∆ s.t. (x, y) ∈ RI and y ∈ CI} ≥ n};

(≤ nR.C)I= {x ∈ ∆ | ♯{y ∈ ∆ s.t. (x, y) ∈ RI and y ∈ CI} ≤ n}

For the T operator, we let:

(T(C))I = min<(C
I), where min<(S) = {u : u ∈ S and ∄z ∈ S s.t. z < u}.

It can be proved that an irreflexive and transitive relation < on ∆ is well-founded if and

only if there are no infinite descending chains . . . xi+1 < xi < . . . < x0 of elements of

∆.

The logic SHIQR
T, as well as the underlying SHIQ, does not enjoy the finite

model property [29]. As for rational models in [35] (see Proposition 3.7), SHIQR
T

4 As observed in [21], this condition is stronger than the smoothness condition introduced by

Kraus, Lehmann and Magidor [32]. Indeed, the condition above considers all subsets S of ∆

and does not only apply to the interpretations CI of the concepts C of the language. It is easy

to prove that such a condition is equivalent to requiring that (∆,<) is well-founded, i.e. there

is no infinite descending chain of individuals.



interpretations can be equivalently defined by postulating the existence of a function

kM : ∆ 7−→ Ord assigning an ordinal to each domain element, and then letting x < y

if and only if kM(x) < kM(y). We call kM(x) the rank of element x in M. When

finite, kM(x) can be understood as the length of a chain x0 < · · · < x from x to a

minimal x0 (an x0 s.t. for no x′, x′ < x0).

Notice that the meaning of T can be split into two parts [16]: for any x of the

domain ∆, x ∈ (T(C))I just in case (i) x ∈ CI , and (ii) there is no y ∈ CI such that

y < x. In order to isolate the second part of the meaning of T, we introduce a new

modality �, whose accessibility relation R✷ is such that (x, y) ∈ R✷ iff y < x. The

well-foundedness of < ensures that typical elements of CI exist whenever CI 6= ∅, by

avoiding infinitely descending chains of elements. The interpretation of � in M is as

follows:

Definition 2. Given an interpretation M, we extend the definition of I with the follow-

ing clause:

(�C)I = {x ∈ ∆ | for every y ∈ ∆, if y < x then y ∈ CI}

It is easy to observe that, as for preferential interpretations in [16], also in ranked inter-

pretations x is a typical instance of C if and only if it is an instance of C and �¬C, that

is to say:

Proposition 1. Given an interpretation M, given a concept C and an element x ∈ ∆,

we have that

x ∈ (T(C))I iff x ∈ (C ⊓�¬C)I

Since we only use � to capture the meaning of T, in the following we will always use

the modality � followed by a negated concept, as in �¬C.

The notion of satisfiability of a KB in an interpretation is defined as usual:

Definition 3 (Satisfiability and entailment). Given a SHIQR
T interpretation M=

〈∆,<, I〉, we say that:

- M satisfies an inclusion C ⊑ D if CI ⊆ DI , and similarly for role inclusions;

- M satisfies an assertion C(a) if aI ∈ CI ;

- M satisfies an assertion R(a, b) if (aI , bI) ∈ RI .

Given a knowledge base K = (T ,A), we say that: an interpretation M satisfies T
(resp. A) if M satisfies all inclusions in T (resp. assertions in A); M is a model of K

if M satisfies T and A.

Let a query F be an inclusion CL ⊑ CR or an assertion C(a), T(C)(a) or R(a, b). We

say that F is entailed by K , written K |=SHIQR
T
F , if for all models M =〈∆,<, I〉

of K , M satisfies F .

Let us now introduce the notion of rank of a SHIQ concept.

Definition 4 (Rank of a concept kM(CR)). Given an interpretation M =〈∆,<, I〉,
we define the rank kM(CR) of a concept CR in the interpretation M as kM(CR) =
min{kM(x) | x ∈ CR

I}. If CR
I = ∅, then CR has no rank in M and we write

kM(CR) = ∞.



It is immediate to verify that:

Proposition 2. For any interpretation M =〈∆,<, I〉, M satisfies T(C) ⊑ D if and

only if kM(C ⊓D) < kM(C ⊓ ¬D) or kM(C) = ∞.

The following theorem states that, for the knowledge bases considered in this paper

(that neither contain typicality assertions in ABox nor allow the typicality operator on

the r.h.s.of inclusions), reasoning in SHIQR
T has the same complexity as reasoning

in SHIQ, i.e. it is in EXPTIME.

Theorem 1. Given a SHIQR
T knowledge base K = (T ,A) and a query F , the

entailment K |=SHIQRT
F can be decided in EXPTIME.

We prove the theorem above by providing a linear encoding of entailment in SHIQR
T

into entailment in SHIQ. First of all, let us remember from [35] that rational entailment

is equivalent to preferential entailment for knowledge bases only containing positive

conditionals A |∼ B. We show that a similar result also holds for the rational extension

of SHIQ with typicality. Let SHIQP
T be the logic that we obtain removing the

requirement of modularity in the definition of interpretation in SHIQR
T (Definition

1). In this logic the typicality operator has a preferential semantics [32], based on the

preferential models rather than on the ranked models [35]. An extension of ALC with

typicality based on preferential models has been studied in [16], while an extension of

ALC with defeasible inclusions based on ranked models has been developed in [4]. As

the TBox of a KB in SHIQR
T is a set of strict inclusions and defeasible inclusions (i.e.,

positive conditionals) and ABox is a set of assertions that do not contain the operator

T, it can be proved that:

Proposition 3. Given a knowledge base K = (T ,A) and a query F (an inclusion or

an assertion),

K |=SHIQRT
F iff K |=SHIQPT

F

Proof. The (if) direction is trivial, thus we consider the (only if) one. Suppose that

K 6|=SHIQP
T
F , let M = 〈∆,<, I〉 be a preferential model ofK , where< is transitive,

irreflexive, and well-founded, which falsifies F . Then, there must be an x ∈ ∆ such that:

if F = E ⊑ D, x ∈ EI and x 6∈ DI ; if F = C(a) (resp., F = T(C)(a)), aI = x and

x 6∈ CI (resp., x 6∈ (T(C))I ). Define first a model M1 = 〈∆,<1, I1〉, where I1 = I

and the relation <1 is defined as follows:

<1=< ∪ {(u, v) | (u = x ∨ u < x) ∧ v 6= x ∧ v 6< x}

It can be proved that:

1. <1 is transitive and irreflexive

2. <1 is well-founded

3. if u < v then u <1 v, for all u, v ∈ ∆

4. if u <1 x then u < x, for all u ∈ ∆.



We can show that M1 is a model of K . This is obvious for the assertions in ABox (as

they do not contain T), for the role inclusions in TBox and for the concept inclusions

in TBox that do not involve T, as the interpretation I is the same in M and in M1.

Given an inclusion T(G) ⊑ H ∈ K , if it holds in M then it holds also in M1 as

minM1

<1
(G) ⊆ minM

< (G). We show that M1 falsifies F by cases on the form of F . If

F is E ⊑ D, then x ∈ E and x 6∈ D. The only interesting case is when E = T(C).
To this regard, we know that x 6∈ DM1 , as the interpretation I is the same in M
and M1. Suppose by absurd that x 6∈ (T(C))I1 . Since x ∈ (T(C))I , we have that

x ∈ CI = CI1 , thus there must be a y <1 x with y ∈ CI1 = CI . But then, by 4,

y < x and we get a contradiction. Thus x ∈ (T(C))I1 and x 6∈ DI1 , that is, x falsifies

E ⊑ D in M1. If the query F is C(a), then aI = x and x 6∈ CI . Hence, aI1 = x and

x 6∈ CI1 , so that C(a) is falsified in M1. If the query F is T(C)(a), then aI = x and

x 6∈ (T(C))I . Hence, aI1 = x. From x 6∈ (T(C))I , there is y ∈ ∆ such that y < x

and y ∈ CI . By 3, y <1 x and, from y ∈ CI1 , we conclude x 6∈ (T(C))I1 . Therefore,

T(C)(a) is falsified in M1.

Observe that <1 in model M1 satisfies:

(∗) ∀z 6= x (z <1 x ∨ x <1 z)

As a next step we define a modular model M2 = 〈∆,<2, I2〉, where I2 = I1 = I and

the relation <2 is defined as follows. Considering M1 where <1 is well-founded, we

can define by recursion the following function k from ∆ to ordinals :

– k(u) = 0 if u is minimal in M1 (whence the set {y | y <1 u} is empty)
– k(u) = max{k(y) | y <1 u}+ 1

if the set {k(y) | y <1 u} is non-empty and has a maximal element.
– k(u) = sup{k(y) | y <1 u}

otherwise, that is the set {k(y) | y <1 u} is non-empty, but there is no a maximal

k(y) for y <1 u.

Observe that if u <1 v then k(u) < k(v). We now define:

u <2 v iff k(u) < k(v)

Notice that <2 is clearly transitive, modular, and well-founded; moreover u <1 v im-

plies u <2 v. We can prove as before that M2 is a model of K and that it falsifies the

query F by x. For the latter, let F be E ⊑ D. We know that M1 falsifies F by x, i.e.,

x ∈ EI1 and x 6∈ DI1 We consider again the only interesting case when E = T(C),
so that x ∈ (T(C))I1 . Suppose by absurd that x 6∈ (T(C))I2 . Since x ∈ (T(C))I1 ,

we have that x ∈ CI2 = CI1 , thus there must be a y <2 x with y ∈ CI2 = CI1 .

But y <2 x means that k(y) < k(x). We can conclude that it must be also y <1 x,

otherwise by (*) we would have x <1 y which entails k(x) < k(y), a contradiction.

We have shown that y <1 x and y ∈ CI1 , thus x 6∈ (T(C))I1 a contradiction. There-

fore x ∈ (T(C))I2 and x 6∈ DI2 , that is x falsifies E ⊑ D in M2. We have shown

that K 6|=SHIQRT
F , when F is E ⊑ D. The case when F = C(a) is trivial. When

F is T(C)(a), as M1 falsifies F , then aI1 = x and x 6∈ (T(C))I1 . Hence, aI2 = x.

Also, from x 6∈ (T(C))I1 , there is y ∈ ∆ such that y <1 x and y ∈ CI1 = CI2 . As

y <1 x then k(y) < k(x), hence y <2 x. From y ∈ CI2 , we conclude x 6∈ (T(C))I2 .

Therefore, T(C)(a) is falsified in M2.



The proof above does not rely on specific properties of the logic SHIQ and Proposition

3 also holds for other description logics, provided the typicality operator may only

occur on the left hand side of concept inclusions (as we have assumed in this paper).

In particular, Proposition 3 holds for the rational extension of SROIQ introduced

in [14]. However, Proposition 3 would not hold if typicality assertions on individuals

were contained in the ABox, as typicality assertions entail negative conditionals (in fact,

although¬(T(C) ⊑ A) is not in the language, in any interpretation satisfying the ABox

A = {T(C)(a),¬A(c)}, the inclusion T(C) ⊑ A is false, and ¬(T(C) ⊑ A) follows

from the KB.

Given the result in Proposition 3, to prove Theorem 2.7 it is enough to show that

reasoning in SHIQP
T can be polynomially reduced to reasoning in SHIQ. To this

purpose, we show that for all queries F in SHIQP
T:

K |=SHIQPT
F iff K ′ |=SHIQ F ′ (1)

for some polynomial encoding K ′ and F ′ of K and F in SHIQ. The existence of such

a polynomial encoding has been proved in [14] for a preferential extension of SROIQ
[27], but it holds for all the logics containing the constructs of ALC. Here we provide a

simplified encoding for SHIQ.

The idea of the encoding exploits the definition of the typicality operator T in terms

of the modality ✷ recalled in Section 2: T(C) is defined as C⊓✷¬C, where the accessi-

bility relation of the modality✷ is the inverse of the preference relation< in preferential

models. The encoding introduces a new concept name ✷¬C , for each typicality concept

T(C) occurring in K (or in the query) and replaces each occurrence of a concept T(C)
with the concept C ⊓ ✷¬C .

To capture the properties of the ✷ modality, a new transitive role name P< is in-
troduced to represent the relation < in preferential models, and the following concept
inclusion axioms are introduced in K ′ (for all concepts C such that T(C) occurs in K):

✷¬C ⊑ ∀P< .¬C ¬✷¬C ⊑ ∃P< .(C ⊓ ✷¬C)

The first inclusion encodes the semantics of the modality. Since P< is a transitive role,

the inclusion is a simplification of the corresponding inclusion ✷¬C ⊑ ∀P<.(¬C ⊓
✷¬C) in [14], as transitive roles are not available in SROIQ. The second inclusion

accounts for the well-foundedness: if a domain element is not a typical C element then

there must be a typical C element preferred to it. The encoding is linear.

Observe that the same role name P< is used in the inclusions for any concept C, and

P< is not required to satisfy irreflexivity and modularity. It is proven in [14] that this is

enough to establish equivalence (1). We refer to [14] for the proof, which is essentially

the same for SHIQP
T as for SROIQP

T apart from a slight simplification thanks to

transitivity of P<
5.

From the encoding of SHIQP
T into SHIQ, given Proposition 3, the following

proposition can be obtained, which proves Theorem 1:

5 In particular, for the simplified encoding, one can simplify the (only if) part of the proof of

Proposition 2 in [15], by defining < starting directly from P I
′

< rather than from its transitive

closure (P I
′

< )+.



Proposition 4. Let K = (T ,A) be a knowledge base in SHIQR
T and F a query.

K |=SHIQR
T

F iff K ′ |=SHIQ F ′, where K ′ and F ′ are polynomial encodings in

SHIQ of K and F , respectively.

As a consequence, rational entailment in SROIQR
T can be computed by optimized

DL reasoners over linear encodings of the KB and query. Observe that Proposition 4

holds as well for ALC (based on the encoding in [14]) and for all the description logics

ranging from ALC to SROIQ (or from ALC to SHOIQ), provided the typicality

operator only occurs on the left hand side of concept inclusions in the KB. Let L be

such a logic (that contains at least the constructs of ALC) and let LR
T be the rational

extension of L.

Corollary 1. Entailment in the rational extension LR
T of L is in the same complexity

class as entailment in L.

As a consequence of the corollary above, given a knowledge base K in the ratio-

nal extension LR
T of any logic L from ALC to SROIQ [27], the instance checking

problem (i.e. checking whether C(a), T(C)(a) or R(a, b) is entailed by K) and the

subsumption problem (i.e., checking whether C ⊑ D is entailed by K , where C can

contain the typicality operator T) have the same complexity as the instance checking

problem and the subsumption problem in L (respectively), provided that in K the typ-

icality operator is only allowed to occur on the left hand side of concept inclusions, as

we have assumed in this paper. Such problems can be solved using the linear encod-

ing in [14], or the simplified one described above if transitive roles are available, and

solving the corresponding instance checking (resp., subsumption) problem in L. This is

stated by the following theorem (where L and LR
T are defined as above):

Theorem 2. The instance checking and subsumption problems in the rational extension

LR
T of L are in the same complexity class as the instance checking and subsumption

problems in L (respectively).

A Protégé plug-in for reasoning in DLs under the rational closure of TBox has been

presented in [22].

3 Minimal Model Semantics

It is easy to see that the typicality operator T itself is nonmonotonic, i.e., T(C) ⊑ D

does not imply T(C ⊓ E) ⊑ D. This nonmonotonicity of T allows to express the

properties that hold for the typical instances of a class but, possibly, not for all the

members of that class. However, the logic SHIQR
T is monotonic: what is inferred

from a KB can still be inferred from any KB’ with KB ⊆ KB’. This is a clear limitation

in DLs. As a consequence of the monotonicity of SHIQR
T, one cannot deal with

irrelevance. For instance, a KB

VIP ⊑ Person

T(Person) ⊑ ≤ 1 HasMarried .Person

T(VIP) ⊑ ≥ 2 HasMarried .Person



does not entail T(VIP ⊓ Tall) ⊑ ≥ 2 HasMarried .Person , even if the property of

being tall is irrelevant with respect to the number of marriages. Observe that we do not

want to draw this conclusion in a monotonic way from SHIQR
T, since otherwise we

would not be able to retract it when knowing, for instance, that typical tall VIPs have

just one marriage (see also Example 1). Rather, we would like to obtain this conclusion

in a nonmonotonic way. In order to obtain this nonmonotonic behavior, we strengthen

the semantics of SHIQR
T by defining a minimal models mechanism which is similar,

in spirit, to circumscription. Given a KB, the idea is to: 1. define a preference relation

among SHIQR
T models, giving preference to the model in which domain elements

have a lower rank; 2. restrict entailment to minimal SHIQR
T models (w.r.t. the above

preference relation) of the KB.

Definition 5 (Minimal models). Given M =〈∆,<, I〉 and M′ = 〈∆′, <′, I ′〉 we say

that M is preferred to M′ (M ≺ M′) if (i) ∆ = ∆′, (ii) CI = CI′

for all (non-

extended) concepts C, and (iii) for all x ∈ ∆, kM(x) ≤ kM′(x) whereas there exists

y ∈ ∆ such that kM(y) < kM′(y). Given a knowledge base K , we say that M is a

minimal model of K with respect to ≺ if it is a model satisfying K and there is no M′

model satisfying K such that M′ ≺ M.

To prove the existence of minimal models of a consistent KB, let us define K = KF ∪
KD where:

KF = {C ⊑ D ∈ T : T does not occur in C}∪ {R ⊑ S ∈ T } ∪ A
KD = {T(C) ⊑ D ∈ T },

Proposition 5 (Existence of minimal models). If K is a satisfiable knowledge base,

then it has a minimal model.

Proof. Let M = 〈∆,<, I〉 be a model of K , where we assume that kM : ∆ −→ Ord

determines < and Ord is the class of ordinals. We show that a minimal model Mmin =
〈∆min, <

min, Imin〉 of K can be constructed, with ∆min = ∆ and Imin = I . Define

the relation

M ≈ M′ if M′ = 〈∆′, <′, I ′〉, ∆′ = ∆ and CI = CI′

for all (non-extended)

concepts C

where <′ is also determined by some rank function kM′ on ordinals6. Define further

ModK (M) = {M′ | M′ |= K and M′ ≈ M}. Clearly, ModK (M) is non-empty

as M ∈ ModK (M). We define Mmin = 〈∆min, <
min, Imin〉, with ∆min = ∆,

Imin = I and <min determined by the rank function kMmin
defined as follows:

kMmin
(x) = min{kM′(x) | M′ ∈ ModK (M)}, for all x ∈ ∆

Observe that kMmin
(x) is well-defined for any element x ∈ ∆ and kMmin

(C) =

min{kMmin
(x) | x ∈ CImin

} is well-defined for any concept C (a set of ordinals

has always a least element). We now show that Mmin |= K . Since Imin = I and

M |= KF , it follows immediately that Mmin |= KF .

6 Notice that there is no requirement that in M′ the interpretation of individual and role names

must be the same as in M.



We prove that Mmin |= KD. Let T(C) ⊑ E ∈ KD. Suppose by absurdity that

Mmin 6|= T(C) ⊑ E, this means that kMmin
(C ⊓ ¬E) ≤ kMmin

(C ⊓ E). Let

M1 ∈ ModK(M), such that kMmin
(C ⊓¬E) = kM1

(C⊓¬E). M1 exists. Similarly,

let M2 ∈ ModK(M), such that kMmin
(C ⊓ E) = kM2

(C ⊓ E). We then have

kM1
(C ⊓¬E) = kMmin

(C ⊓¬E) ≤ kMmin
(C ⊓E) = kM2

(C ⊓E) ≤ kM1
(C ⊓E),

as kM2
(C ⊓ E) is minimal. Thus we get that kM1

(C ⊓ ¬E) ≤ kM1
(C ⊓ E) against

the fact that M1 is a model of K .

The minimal model semantics introduced above is the same used in [21] for defining a

semantic characterization of the rational closure in ALC. Although it has strong similar-

ities with the minimal model semantics for ALC presented in [18], it is worth noticing

that the notion of minimality here (and in [21]) is based on the minimization of the

ranks of domain elements, while in [18] it is based on the minimization of the instances

of the concepts ¬✷¬C. Both kinds of minimization, roughly speaking, are intended to

maximize the typicality of the individuals belonging to a concept. The choice of the

kind of minimization, however, makes a big difference from the point of view of the

complexity of the resulting minimal entailment. In Section 4, we show that there is a

correspondence between the minimal models of a KB (according to the semantics in

Definition 5) and the rational closure of a KB.

3.1 Infinite Minimal Models with finite ranks

In the following we provide a characterization of minimal models of a KB in terms of

their rank: intuitively minimal models are exactly those where each domain element

has rank 0 if it satisfies all defeasible inclusions, and otherwise has the smallest rank

greater than the rank of any concept C occurring in a defeasible inclusion T(C) ⊑ D

of the KB falsified by the element. Exploiting this intuitive characterization of minimal

models, we are able to show that, for a finite KB, minimal models have always a finite

ranking function, no matter whether they have a finite domain or not. This result allows

us to provide a semantic characterization of rational closure for logics, like SHIQ,

that do not have the finite model property. Let K = KF ∪KD, as defined in Section 3,

where KD is the set of all defeasible inclusions in K and KF is the set of all the strict

concept inclusions, role inclusions and assertions in K .

Given a model M = 〈∆,<, I〉, let us define the set SM
x of defeasible inclusions

falsified by a domain element x ∈ ∆, as SM
x = {T(C) ⊑ D ∈ KD | x ∈ (C ⊓¬D)I}.

Proposition 6. Let M = 〈∆,<, I〉 be a model of K and x ∈ ∆, then: (a) if kM(x) =
0 then SM

x = ∅; (b) if SM
x 6= ∅ then kM(x) > kM(C) for every C such that, for some

D, T(C) ⊑ D ∈ SM
x .

Proof. Observe that (a) follows from (b), since if kM(x) = 0 then it cannot be kM(x) >
kM(C), for any C, whence by (b) it must be SM

x = ∅ . Let us prove (b). Suppose for

a contradiction that (b) is false, so that SM
x 6= ∅ and for some C such that, for some

D, T(C) ⊑ D ∈ SM
x , we have kM(x) ≤ kM(C). We have also that x ∈ (C ⊓ ¬D)I

as T(C) ⊑ D ∈ SM
x . But M |= K , in particular M |= T(C) ⊑ D, thus it must be

x 6∈ (T(C))I ; but since x ∈ CI , we have that x 6∈ Min(CI), that is there is y ∈ CI ,

with kM(y) < kM(x), which means kM(x) > kM(C), and we get a contradiction.



Proposition 7. Let K = KF ∪ KD and M = 〈∆,<, I〉 be a model of KF ; suppose

that for any x ∈ ∆ it holds:

(a) if kM(x) = 0 then SM
x = ∅

(b) if SM
x 6= ∅ then kM(x) > kM(C) for every C such that, for some D, T(C) ⊑

D ∈ SM
x .

Then M |= K .

Proof. Let T(C) ⊑ D ∈ KD, suppose that for some x ∈ CI , it holds x ∈ (T(C))I −
DI , then T(C) ⊑ D ∈ SM

x . By hypothesis, we have kM(x) > kM(C), against the

fact that x ∈ (T(C))I .

Proposition 8. Let K = KF ∪ KD and M = 〈∆,<, I〉 a minimal model of K , for

every x ∈ ∆, it holds:

(a) if SM
x = ∅ then kM(x) = 0

(b) if SM
x 6= ∅ then kM(x) = 1 +max{kM(C) such that T(C) ⊑ D ∈ SM

x }.

Proof. Let M = 〈∆,<, I〉 be a minimal model of K . Define another model M′ =
〈∆,<′, I〉, where <′ is determined by a ranking function kM′ as follows:

• kM′(x) = 0 if SM
x = ∅,

• kM′(x) = 1 +max{kM(C) | T(C) ⊑ D ∈ SM
x } if SM

x 6= ∅.

It is easy to see that (i) for every x kM′(x) ≤ kM(x). Indeed, if SM
x = ∅ then it is

obvious; if SM
x 6= ∅, then kM′(x) = 1+max{kM(C) | T(C) ⊑ D ∈ SM

x } ≤ kM(x)
by Proposition 6. It equally follows that (ii) for every concept C, kM′(C) ≤ kM(C).
To see this: let z ∈ CI such that kM(z) = kM(C), either kM′(C) = kM′(z) ≤ kM(z)
and we are done, or there exists y ∈ CI , such that kM′(C) = kM′(y) < kM′(z) ≤
kM(z).

Observe that SM
x = SM′

x , since the evaluation function I is the same in the two

models. By definition of M′, we have M′ |= KF ; moreover by (i) and (ii) it follows

that:

(iii) if kM′(x) = 0 then SM′

x = ∅.

(iv) if SM′

x 6= ∅: kM′(x) = 1 + max{kM(C) | T(C) ⊑ D ∈ SM
x } ≥ 1 +

max{kM′(C) | T(C) ⊑ D ∈ SM′

x }, that is kM′(x) > kM′(C) for every C such that

for some D, T(C) ⊑ D ∈ SM′

x .

By Proposition 7 we obtain that M′ |= K; but by (i) kM′(x) ≤ kM(x) and by

hypothesis M is minimal. Thus it must be that for every x ∈ ∆, kM′(x) = kM(x)
(whence kM′(C) = kM(C)) which entails that M satisfies (a) and (b) in the statement

of the theorem.

Also the opposite direction holds:

Proposition 9. Let K = KF ∪ KD, let M = 〈∆,<, I〉 be a model of KF , suppose

that for every x ∈ ∆, it holds:

(a) SM
x = ∅ iff kM(x) = 0

(b) if SM
x 6= ∅ then kM(x) = 1 +max{kM(C) | T(C) ⊑ D ∈ SM

x }.

then M is a minimal model of K .



Proof. In light of previous Propositions 6 and 7, it is sufficient to show that M is mini-
mal. To this aim, let M′ = 〈∆,<′, I〉, with associated ranking function kM′ , be another
model of K , we show that for every x ∈ ∆, it holds kM(x) ≤ kM′(x). We proceed

by induction on kM′(x). If SM
x = SM′

x = ∅, we have that kM(x) = 0 ≤ kM′(x)

(no need of induction). If SM
x = SM′

x 6= ∅, then since M′ |= K , by Proposition 6:

kM′(x) ≥ 1 + max{kM′(C) | T(C) ⊑ D ∈ SM′

x }. Let SM′

x = SM
x = {T(C1) ⊑

D1, . . . ,T(Cu) ⊑ Du}. For i = 1, . . . , u let kM′(Ci) = kM′(yi) for some yi ∈ ∆.
Observe that kM′(yi) < kM′(x), thus by induction hypothesis kM(yi) ≤ kM′(yi), for
i = 1, . . . , u. But then kM(Ci) ≤ kM(yi), so that we finally get:

kM′(x) ≥ 1 +max{kM(C) | T(C) ⊑ D ∈ S
M

′

x }

= 1 +max{kM′(C1), . . . , kM′(Cu)}

= 1 +max{kM′(y1), . . . , kM′(yu)}

≥ 1 +max{kM(y1), . . . , kM(yu)}

≥ 1 +max{kM(C1), . . . , kM(Cu)}

= 1 +max{kM(C) | T(C) ⊑ D ∈ S
M

x }

= kM(x)

Putting Propositions 8 and 9 together, we obtain the following theorem which provides

a characterization of minimal models.

Theorem 3. Let K = KF ∪ KD, and let M = 〈∆,<, I〉 be a model of KF . The

following are equivalent:

•M is a minimal model of K

• For every x ∈ ∆ it holds: (a) SM
x = ∅ iff kM(x) = 0 (b) if SM

x 6= ∅ then

kM(x) = 1 +max{kM(C) | T(C) ⊑ D ∈ SM
x }.

The following proposition shows that in any minimal model the rank of each domain

element is finite.

Proposition 10. Let K = KF ∪KD and M = 〈∆,<, I〉 a minimal model of K , for

every x ∈ ∆, kM(x) is a finite ordinal (kM(x) < ω).

The previous proposition is essential for establishing a correspondence between the

minimal model semantics of a KB and its rational closure. From now on, we can assume

that the ranking function assigns to each domain element in ∆ a natural number, i.e.

that kM : ∆ −→ N. From the statement of Proposition 9 we can also conclude that

the rank of a domain element x in any minimal model of the KB cannot be higher than

the number of typicality inclusions T(C) ⊑ D in the KB. Both the finite rank result

(Proposition 10) and the existence of minimal models result (Proposition 5) hold as

well for more expressive logics such as SHOIQ and SROIQ, as their proof does not

depend on the underlying description logic.

In the next section we will extend to SHIQR
T the notion of rational closure: this

extension allows to deal with irrelevance and allows to attribute typical properties to

concepts. Based on the finite rank proposition (Proposition 10), we can now prove that

the rational closure of SHIQR
T is semantically characterized by (a specific class of)

the minimal models introduced in Defintion 5.



4 Rational Closure for SHIQ

In this section, we extend to SHIQ the notion of rational closure introduced by Lehmann

and Magidor [35]. Given the typicality operator, the typicality inclusions T(C) ⊑ D

(all the typical C’s are D’s) play the role of conditional assertions C |∼ D in [35].

Here, we adopt for SHIQ the rational closure construction introduced for ALC in [21].

However, as we restrict our consideration to the case when the ABox does not contain

typicality assertions T(C)(a), the construction is simpler as it does not require ABox

to be modified when computing the closure of the TBox. Nevertheless ABox has to be

taken into account to make the construction general enough to work for expressive log-

ics which allow the TBox to be internalized into the ABox. This construction is similar,

but not equivalent, to the rational closure constructions for ALC in [6, 5], which exploit

materialization. As a difference, we use rational entailment in the construction, and we

show that the rational closure w.r.t. TBox can be computed by exploiting a polynomial

encoding of SHIQR
T into SHIQ, so that that the problem of deciding whether a (de-

feasible) inclusion belongs to the rational closure of a TBox is in EXPTIME. In Section

6 we shortly discuss the rational closure over the ABox.

Definition 6 (Exceptionality of concepts and inclusions). Let K = (T ,A) be a KB

and C a concept. C is exceptional for K if and only if K |=SHIQR
T

T(⊤) ⊑ ¬C.

A T-inclusion T(C) ⊑ D is exceptional for K if C is exceptional for K . The set of

T-inclusions of K which are exceptional in K will be denoted by E(K).

Given a DL knowledge base K = (T ,A), it is possible to define a sequence of non

increasing subsets of TBoxes T = T0 ⊇ T1 ⊇ T2, . . . by letting,

T0 = T ;

K0 = (T0,A);
Ti = E(Ki−1) ∪ {C ⊑ D ∈ T s.t. operator T does not occur in C}, for i > 0;

Ki = (Ti,A).
Observe that, being K finite, there is an n ≥ 0 such that, for all m > n,Km = Kn

or Km = ∅. Observe also that the definition of the Ki’s is similar to the definition

of the Ci’s in Lehmann and Magidor’s rational closure [32] but, at each step, “strict”

inclusions C ⊑ D are also added in Ti.

Definition 7 (Rank of a concept). A concept C has rank i (denoted by rank(C) = i)

for K = (T ,A), iff i is the least natural number for which C is not exceptional for Ki.

If C is exceptional for all Ki then rank(C) = ∞, and we say that C has no rank.

The notion of rank of a formula allows to define the rational closure of the TBox of a

knowledge base.

Definition 8 (Rational closure of a TBox). Let K = (T ,A) be a DL knowledge base.

We define, T , the rational closure of T , as

T = {T(C) ⊑ D | either rank(C) < rank(C ⊓ ¬D) or rank(C) = ∞}
∪ {C ⊑ D | K |=SHIQR

T
C ⊑ D}

where C and D are arbitrary SHIQ concepts.



As for the rational closure by Lehmann and Magidor [35], the rational closure construc-

tion above allows to strengthen inference in SHIQR
T and, for instance, it allows to

deal with irrelevance:

Example 1. Let K = (T ,A), with T = {T(Actor) ⊑ Charming} and A = ∅.

It can be verified that T(Actor ⊓ Comic) ⊑ Charming ∈ T . This is a nonmono-

tonic inference that does no longer follow if we discover that indeed comic actors

are not charming (and, in this respect, they are atypical actors): indeed given a TBox

T ′ = T ∪ {T(Actor ⊓Comic) ⊑ ¬Charming}, we have that T(Actor ⊓Comic) ⊑
Charming 6∈ T ′. Indeed, as for the propositional case, rational closure is closed un-

der rational monotonicity [32]: from T(Actor ) ⊑ Charming ∈ T and T(Actor) ⊑
Bold 6∈ T it follows that T(Actor ⊓ ¬Bold ) ⊑ Charming ∈ T .

Although the rational closure T is an infinite set, its definition is based on the construc-

tion of a finite sequence T0, T1, . . . , Tn of subsets of T , and the problem of verifying

that an inclusion T(C) ⊑ D ∈ T can be shown to be in EXPTIME. Note that, in

the sequence T0, T1, . . . , Tn, n is O(|KD|) and hence O(|K|), where |K| is the size

of K . Computing E(Ki−1), for each i = 1, . . . , n, requires to check, for all concepts

A occurring on the left hand side of a T-inclusion in Ti−1 whether Ki−1 |=SHIQRT

T(⊤) ⊑ ¬A. Using the encoding in SHIQ (Proposition 1) it is enough to check that

K ′
i−1 |=SHIQ ⊤ ⊓ ✷¬⊤ ⊑ ¬A, which requires exponential time in the size of K ′

i−1

(and hence in the size of K , since the encoding is linear). If not already checked, the

exceptionality of C and of C ⊓ ¬D have to be checked for each Ki, to determine the

ranks of C and of C ⊓ ¬D (which can be computed using the encoding in SHIQ as

well). Hence, computing the ranks of all the concepts C, such that T(C) occurs in the

TBox or in the query, requires a quadratic number of calls (in the number of typicality

inclusions and, hence, in the size of K) of an EXPTIME procedure (in the size of K)

which checks entailment in SHIQ.

Theorem 4 (Complexity of rational closure over TBox). Given a knowledge base

K = (T ,A) , the problem of deciding whether T(C) ⊑ D ∈ T is in EXPTIME.

The argument above shows that the rational closure of a TBox can be computed

simply using the entailment in SHIQ, through the encoding of SHIQR
T into SHIQ.

Observe that the rational closure construction above can be used as well to define the

rational closure of a TBox in any standard description logic L containing at least the

constructs of ALC, by replacing entailment in SHIQR
T in Definitions 6 and 8 with

entailment in the rational extension LR
T of L. In particular, the construction of ratio-

nal closure above can be adopted for expressive DLs such as SHOIQ and SROIQ
[27] (the description logic at the bases of OWL2 DL), exploiting the linear encodings

defined in Section 2 (see Theorem 2) or the one in [14]. As we will see, the meaning

of the rational closure for more expressive logics including nominals can sometimes be

problematic and we defer the discussion of this issue to Section 7.

5 A Minimal Model Semantics for Rational Closure in SHIQ

In previous sections we have extended to SHIQ the notion of rational closure intro-

duced in [35] for propositional logic. To provide a semantic characterization of rational



closure, we define a special class of minimal models, exploiting the fact that, by Propo-

sition 10, in all minimal SHIQR
T models the rank of each domain element is always

finite. First of all, we can observe that the minimal model semantics in Definition 5, as

it is, cannot capture the rational closure of a TBox.

Consider K = (T , ∅), where T contains: VIP ⊑ Person , T(Person) ⊑ ≤ 1
HasMarried .Person ,T(VIP )⊑≥ 2HasMarried .Person . We observe thatT(VIP⊓
Tall ) ⊑ ≥ 2 HasMarried .Person does not hold in all minimal SHIQR

T models of

K w.r.t. Definition 5. Indeed there is a minimal model M = 〈∆,<, I〉 of K in which

∆ = {x, y, z}, VIPI = {x, y}, PersonI = {x, y, z}, (≤ 1 HasMarried . Person)I =
{x, z}, (≥ 2 HasMarried .Person)I = {y}, Tall I = {x}, and z < y < x. Also,

x is a typical tall VIP in M (since there is no other tall VIP preferred to him) and

has no more than one spouse, therefore T(VIP ⊓ Tall ) ⊑ ≥ 2 HasMarried .Person

does not hold in M. On the contrary, it can be verified that T(VIP ⊓ Tall ) ⊑ ≥
2 HasMarried .Person ∈ T .

Things change if we consider the minimal models semantics applied to models that

contain a domain element for each combination of concepts consistent with K . We call

these models canonical models. Therefore, in order to semantically characterize the

rational closure of a SHIQR
T knowledge base K , we restrict our attention to minimal

canonical models. First, we define SK as the set of all the (non-extended) concepts (and

subconcepts) occurring in K or in the query F together with their complements.

In order to define canonical models, we consider all the sets of (non-extended)

concepts {C1, C2, . . . , Cn} ⊆ SK that are consistent with K , i.e., s.t. K 6|=SHIQR
T

C1 ⊓ C2 ⊓ · · · ⊓ Cn ⊑ ⊥.

Definition 9 (Canonical model with respect to SK). Given K = (T ,A) and a query

F , a model M =〈∆,<, I〉 of K is canonical with respect to SK if it contains at least

a domain element x ∈ ∆ s.t. x ∈ (C1 ⊓ C2 ⊓ · · · ⊓ Cn)
I , for each set of concepts

{C1, C2, . . . , Cn} ⊆ SK that is consistent with K .

Next we define the notion of minimal canonical model.

Definition 10 (Minimal canonical models (w.r.t. SK)). M is a minimal canonical

model of K if it is a canonical model of K and it is minimal with respect to ≺ (see

Definition 5) among all the canonical models of K .

Proposition 11 (Existence of minimal canonical models). Let K be a finite knowl-

edge base, if K is satisfiable then it has a minimal canonical model.

Proof. Let M = 〈∆,<, I〉 be a minimal model of K (which exists by Proposition 5),

and let {C1, C2, . . . , Cn} ⊆ SK any subset of SK consistent with K .

We show that we can expand M in order to obtain a model of K that contains an

instance of C1 ⊓ C2 ⊓ · · · ⊓ Cn. By repeating the same construction for all maximal

subsets {C1, C2, . . . , Cn} of SK , we eventually obtain a canonical model of K .

For each {C1, C2, . . . , Cn} consistent with K , it holds that K 6|=SHIQRT
C1⊓C2⊓

· · · ⊓ Cn ⊑ ⊥, i.e. there is a model M′ = 〈∆′, <′, I ′〉 of K that contains an instance

of {C1, C2, . . . , Cn}.

Let M′∗ be the model obtained by combiningM and M′ as follows. We let M′∗ =
〈∆′∗, <′∗, I ′∗〉, where ∆′∗ = ∆∪∆∗. As far as individuals a ∈ O named in the ABox,



aI
′∗

= aI , whereas for the concepts and roles, I ′∗ = I on ∆ and I ′∗ = I ′ on ∆′. Also,

kM′∗ = kM for the elements in ∆, and kM′∗ = kM′ for the elements in ∆′. We let

x <′∗ y iff kM′∗(x) = kM′∗(y), for all x, y ∈ ∆′∗.

The model M′∗ is still a model of K . For the set KF in the previous definition this

is obviously true. For KD, for each T(C) ⊑ D in KD, if x ∈ min<′∗(CI′∗

) in M′∗,

then x ∈ min<(C
I) in M or x ∈ min<′(CI′

) in M′. In both cases x is an instance

of D (since both M and M′ satisfy KD), therefore x ∈ DI′∗

, and M′∗ satisfies KD.

By repeating the same construction for all maximal subsets {C1, C2, . . . , Cn} of

SK , we obtain a canonical model of K , call it M∗. We do not know whether the model

is minimal. However, by applying the construction used in the proof of Proposition 5,

we can construct a minimal model of K , M∗
min, with the same domain and interpreta-

tion function as M∗. M∗
min is therefore a canonical model of K , and furthermore it

is minimal. Therefore K has a minimal canonical model.

We observe that this proof would not go through for SHOIQ, and we will see some

counterexample in Section 7. To prove the correspondence between minimal canonical

models and the rational closure of a TBox, we need to introduce some propositions. We

recall that by rank(C) we denote the rank of C in the rational closure construction (Def.

7), while by kM(C) we denote the rank of concept C in the model M (Def. 4). Next

proposition concerns all SHIQR
T models. Given a SHIQR

T model M =〈∆,<, I〉,
we define a sequenceM0, M1,M2, . . . of models as follows: we let M0 = M and, for

all i, we let Mi = 〈∆,<i, I〉 be the SHIQR
T model obtained from M by assigning a

rank 0 to all the domain elements x with kM(x) ≤ i. More precisely, we let kMi
(x) =

kM(x) − i if kM(x) > i, and kMi
(x) = 0 otherwise. We can prove the following:

Proposition 12. Let K = (T ,A) and let M = 〈∆,<, I〉 be any SHIQR
T model of

K . For any concept C, if rank(C) ≥ i, then: 1) kM(C) ≥ i, and 2) if T(C) ⊑ D is

entailed by Ki, then Mi satisfies T(C) ⊑ D.

Proof. By induction on i. For i = 0: 1) holds (since it always holds that kM(C) ≥ 0).

2) holds trivially as M0 = M.

For i > 0: Let us prove 1). If rank(C) ≥ i, then, by Definition 7, for all j < i,

we have that Kj |= T(⊤) ⊑ ¬C. By inductive hypothesis on 2), for all j < i Mj |=
T(⊤) ⊑ ¬C. Hence, for all x with kM(x) < i, x 6∈ CI , and kM(C) ≥ i.

To prove 2), we reason as follows. Since Ki ⊆ K0, M |= Ki. All strict inclusions

in Ki are satisfied in Mi. Furthermore by construction, for all T(C) ⊑ D ∈ Ki,

rank(C) ≥ i and hence, by 1) just proved, kM(C) ≥ i. Thus, in M, min<(C
I) ≥ i,

and also Mi |= T(C) ⊑ D. Therefore Mi |= Ki.

Let us now consider minimal canonical models and prove a correspondence between

the rank of a formula in the rational closure (Definition 7) and the rank of a formula in

a model (Definition 4).

Proposition 13. Given K = (T ,A), for all C ∈ SK , if rank(C) = i, then: 1) there is

a {C1 . . . Cn} ⊆ SK maximal and consistent with K such that C ∈ {C1 . . . Cn} and

rank(C1 ⊓ · · · ⊓ Cn) = i; 2) for any M minimal canonical model of K , kM(C) = i.



Proof. By induction on i. Let us first consider the base case in which i = 0. We have

that K 6|=SHIQR
T
T(⊤) ⊑ ¬C. Then there is a modelM1 ofK with a domain element

x such that kM1
(x) = 0 and x satisfies C. By Proposition 5 we can assume without

loss of generality that M1 is minimal. For 1): consider the maximal set of concepts

{C1 . . . Cn} in SK of which x is an instance in M1. By construction, {C1 . . . Cn} is

consistent with K and contains C. Furthermore, rank(C1 ⊓· · ·⊓Cn) = 0 since clearly

K 6|=SHIQR
T
T(⊤) ⊑ ¬(C1 ⊓ · · · ⊓ Cn). For 2): by definition of canonical model, in

any canonical model M of K , {C1 . . . Cn} is satisfiable by an element y. Furthermore,

in any minimal canonical M, kM(y) = 0, since otherwise we could build M′ identical

to M except from the fact that kM′(y) = 0. It can be easily proven that M′ would

still be a model of K (indeed {C1 . . . Cn} was already satisfiable in M1 by an element

with rank 0) and M′ ≺ M, against the minimality of M. Therefore, in any minimal

canonical model M of K , it holds kM(C) = 0.

For the inductive step, consider the case in which i > 0. We have that Ki 6|=SHIQRT

T(⊤) ⊑ ¬C, then there must be a model M1 = 〈∆1, <1, I1〉 of Ki, and a domain ele-

ment x such that kM1
(x) = 0 and x satisfies C. Consider the maximal set of concepts

{C1, . . . Cn} ⊆ SK of which x is an instance in M1. Clearly, {C1 . . . Cn} is consis-

tent with Ki and C ∈ {C1, . . . Cn}. Furthermore, rank(C1 ⊓ · · · ⊓ Cn) = i. Indeed

Ki−1 |=SHIQRT
T(⊤) ⊑ ¬(C1 ⊓ · · · ⊓ Cn) (since Ki−1 |=SHIQRT

T(⊤) ⊑ ¬C
and C ∈ {C1, . . . Cn}), whereas clearly by the existence of x, Ki 6|=SHIQR

T
T(⊤) ⊑

¬(C1 ⊓ · · · ⊓ Cn). In order to prove 1) we are left to prove that the set {C1, . . . Cn}
(that we will call Γ in the following) is consistent with K .

To prove this, take any minimal canonical model M = 〈∆,<, I〉 of K . First ob-

serve that, by inductive hypothesis we know that for all conceptsC′ such that rank(C′) <
i, there is a maximal consistent set of concepts {C′

1, . . . C
′
n} with C′ ∈ {C′

1, . . . C
′
n}

and rank(C′
1 ⊓ · · · ⊓ C′

n) = j < i. Furthermore, we know that kM(C′) = j < i.

For a contradiction, if M did not contain any element satisfying Γ we could expand

it by adding to M a portion of the model M1 including x ∈ ∆1. More precisely, we

add to M a new set of domain elements ∆x ⊆ ∆1, containing the domain element x

of M1 and all the domain elements of ∆1 which are reachable from x in M1 through

a sequence of relations RI1
i s or (R−

i )
I1 s, more precisely: ∆x = {z ∈ ∆1 : (x, z) ∈

(
⋃

i(R
I1
i ∪ (R−

i )
I1))∗}. Let M′ be the resulting model. We define I ′ on the elements

of ∆ as in M, while we define I ′ on the elements of ∆x as in M1. Finally, we let,

for all w ∈ ∆, kM′(w) = kM(w) and, for all y ∈ ∆x, kM′(y) = i + kM1
(y). In

particular, kM′(x) = i. The resulting model M′ would still be a model of K . Indeed,

the ABox would still be satisfied by the resulting model (being the M part unchanged).

For the TBox T : all domain elements already in M still satisfy all the inclusions. For

all y ∈ ∆x (including x): for all inclusions in Ki, y satisfies them (since it does in M1);

for all typicality inclusions T(D) ⊑ G ∈ K − Ki, rank(D) < i, hence by inductive

hypothesis kM(D) < i, hence kM′(D) < i, and y is not a typical instance of D and

trivially satisfies the inclusion. It is easy to see that M′ also satisfies role inclusions

R ⊑ S and that, for each transitive roles R, RI′

is transitive. Observe that, indeed, any

role R may relate elements in ∆, or it may relate elements in ∆x, but it may not relate

an element in ∆ with an element in ∆x or vice-versa.



We have then built a model of K satisfying Γ . Therefore Γ is consistent with K .

As we have proven that Γ is maximal and consistent with K , it contains C and has rank

i, we conclude that point 1) holds.

In order to prove point 2) we need to prove that any minimal canonical model M
of K not only satisfies Γ but satisfies it with rank i, i.e. kM(C1 ⊓ · · · ⊓ Cn) = i,

which entails kM(C) = i (since C ∈ {C1, . . . Cn}) By Proposition 12 we know that

kM(C1 ⊓ · · · ⊓ Cn) ≥ i. We need to show that also kM(C1 ⊓ · · · ⊓ Cn) ≤ i. We

reason as above: for a contradiction suppose kM(C1 ⊓ · · · ⊓ Cn) > i, i.e., for all the

minimal domain elements y instances of C1 ⊓ · · · ⊓ Cn, kM(y) > i. We show that

this contradicts the minimality of M. Indeed consider M′ obtained from M by letting

kM′(y) = i, for some minimal domain element y ∈ (C1 ⊓ · · · ⊓ Cn)
I , and leaving all

the rest unchanged. M′ would still be a model of K: the only thing that changes with

respect to M is that y might have become in M′ a minimal instance of a concept of

which it was only a non-typical instance in M. This might compromise the satisfaction

in M of a typical inclusion as T(E) ⊑ G. However: if rank(E) < i, we know by

inductive hypothesis that kM(E) < i hence also kM′(E) < i and y is not a minimal

instance of E in M′. If rank(E) ≥ i, then T(E) ⊑ G ∈ Ki. As y ∈ (C1 ⊓ · · · ⊓Cn)
I

(where {C1, . . . Cn} ⊆ SK is maximal and consistent with K), we have that: y ∈ F I

iff x ∈ F I1 , for all (non-extended) concepts F . If y ∈ EI , then E ∈ {C1, . . . Cn}.

Hence, in M1, x ∈ EI1 . But M1 is a model of Ki, and satisfies all the inclusions in

Ki. Therefore x ∈ GI1 and, thus, y ∈ GI .

It follows that M′ would be a model of K , and M′≺ M, against the minimality of

M. We are therefore forced to conclude that kM(C1 ⊓ · · · ⊓ Cn) = i, and hence also

kM(C) = i, and 2) holds.

The following theorem follows from the propositions above:

Theorem 5. Let K = (T ,A) be a knowledge base and C ⊑ D a query. We have that

C ⊑ D ∈ T if and only if C ⊑ D holds in all minimal canonical models of K with

respect to SK .

Proof. (⇐) Assume that C ⊑ D holds in all minimal canonical models of K with

respect to SK , and let M =〈∆,<, I〉 be a minimal canonical model of K satisfying

C ⊑ D. Observe that C and D (and their complements) belong to SK . The proof con-

siders two cases: (1) the left end side of the inclusion C does not contain the typicality

operator, and (2) the left end side of the inclusion is T(C).

In case (1), the minimal canonical model M of K satisfies C ⊑ D, i.e., CI ⊆ DI .

For a contradiction, let us assume that C ⊑ D 6∈ T . Then, by definition of T , it must be:

K 6|=SHIQ C ⊑ D. Hence, K 6|=SHIQ C⊓¬D ⊑ ⊥, and the set of concepts {C,¬D}
is consistent with K . As M is a canonical model of K , there must be a element x ∈ ∆

such that x ∈ (C ⊓ ¬D)I . This contradicts the fact that CI ⊆ DI .

In case (2), assume M satisfies T(C) ⊑ D. Then, (T(C))I ⊆ DI , i.e., for each

x ∈ min<(C
I), x ∈ DI . If min<(C

I) = ∅, then there is no x ∈ CI (by the well-

foundedness condition), hence C has no rank in M and, by Proposition 13, C has no

rank (rank(C) = ∞). In this case, by Definition 8, T(C) ⊑ D ∈ T . Otherwise, let us

assume that kM(C) = i. As kM(C ⊓ D) < kM(C ⊓ ¬D), then kM(C ⊓ ¬D) > i.



By Proposition 13, rank(C) = i and rank(C ⊓ ¬D) > i. Hence, by Definition 8,

T(C) ⊑ D ∈ T .

(⇒) If C ⊑ D ∈ T (for C non-extended concept), then, by definition of T ,

K |=SHIQ C ⊑ D. Therefore, each minimal canonical model M of K satisfies

C ⊑ D. If T(C) ⊑ D ∈ T , then by Definition 8, either (a) rank(C) < rank(C⊓¬D),
or (b) rank(C) = ∞. Let M be any minimal canonical model of K . In the case (a), by

Proposition 13, kM(C) < kM(C ⊓ ¬D), which entails kM(C ⊓D) < kM(C ⊓ ¬D).
Hence M satisfies T(C) ⊑ D. In case (b), we can show that C has no rank in M (i.e.,

kM(C) = ∞) and hence M satisfies T(C) ⊑ D. For a contradiction, let kM(C) = j

for some finite j, and let i = j + 1. As kM(C) < i, by Proposition 12 it cannot

be the case that rank(C) ≥ i. Hence, rank(C) < i, which contradicts the fact that

rank(C) = ∞.

6 Rational Closure over the ABox

The construction of rational closure in Section 4 only accounts for TBox minimization.

However, the minimal canonical model semantics can be easily adapted to maximize the

typicality of individual names: as for any domain element, we would like to attribute

to each individual constant named in the ABox the lowest possible rank. Therefore we

further refine Definition 10 of minimal canonical models with respect to TBox by taking

into account the interpretation of individual constants of the ABox.

Definition 11 (Minimal canonical model w.r.t. ABox). Given K = (T ,A), let M =
〈∆,<, I〉 and M′ = 〈∆′, <′, I ′〉 be two models of K . We say that M is preferred

to M′ w.r.t. ABox (M <ABox M′) if, for all individual constants a occurring in A,

kM(aI) ≤ kM′(aI
′

) and there is at least one individual constant b occurring in A such

that kM(bI) < kM′(bI
′

). M is a minimal canonical model of K w.r.t. ABox if M is a

minimal canonical model of K (w.r.t. Definition 10) and there is no minimal canonical

model M′ of K such that M′ <ABox M.

We can prove that:

Theorem 6. For any consistent K = (T ,A) there exists a minimal canonical model of

K w.r.t. ABox.

Indeed, by Proposition 11 the set of minimal canonical models of a consistent K is

non-empty and (by Proposition 10) each domain element of a model in this set has

a finite rank. Hence, it cannot be the case that there is an infinite descending chain

. . . <ABox M1 <ABox M0 of models in the set, and a minimal model w.r.t. <ABox

must exist.

In order to see the strength of the above semantics, consider our example about

marriages and VIPs.

Example 2. Let K = (T ,A) be a knowledge base where: T ={T(Person) ⊑ ≤ 1
HasMarried . Person , T(VIP) ⊑ ≥ 2 HasMarried .Person , VIP ⊑ Person}, and

A = {VIP(demi), Person(marco)}. Knowing that Marco is a person and Demi is a

VIP, we would like to be able to assume, in the absence of other information, that Marco



is a typical person, whereas Demi is a typical VIP, and therefore Marco has at most one

spouse, whereas Demi has at least two. Consider any minimal canonical model M of

KB. Being canonical, M will contain, among other elements, the following:

x ∈ (Person)I , x ∈ (≤ 1 HasMarried .Person)I , x ∈ (¬VIP)I , kM(x) = 0;

y ∈ (Person)I , y ∈ (≥ 2 HasMarried .Person)I , y ∈ (¬VIP)I , kM(y) = 1;

z ∈ (VIP)I , z ∈ (Person)I , z ∈ (≥ 2 HasMarried .Person)I , kM(z) = 1;

w ∈ (VIP)I , w ∈ (Person)I , w ∈ (≤ 1 HasMarried .Person)I , kM(w) = 2.

so that x is a typical person and z is a typical VIP. According to Definition 11, there is a

unique minimal canonical model w.r.t. ABox in which (marco)I = x and (demi)I = z.

An algorithmic construction for computing the rational closure over the ABox has been

presented in [21] for ALC. It is possible to see that the same construction can be used

for SHIQ as well. The construction is based on the idea of considering all the pos-

sible minimal consistent assignments of ranks to the individuals explicitly named in

the ABox, and adopts a skeptical view considering only those conclusions C(a) which

hold for all assignments. Rather than reporting the details of the construction and of the

related complexity results for SHIQ, for which we refer to [20], let us recall Example

14 from [21] which shows that alternative minimal canonical models can be obtained

from the minimal model semantics in Definition 11, with different ranks for individual

names. We will use a variant of the same example in the next section to comment on

the rational closure for the more expressive logics which allows for nominals.

Example 3. Normally computer science courses (CS) are taught only by academic

members (A), whereas business courses (B) are taught only by consultants (C), consul-

tants and academics are disjoint, this gives the following TBox T : T(CS) ⊑ ∀taught.A,

T(B) ⊑ ∀taught.C, C ⊑ ¬A. Suppose the ABox A contains: CS(c1), B(c2), taught
(c1, joe), taught(c2, joe) and let K = (T ,A). From the rational closure T , we get that

all atomic concepts have rank 0. Observe, however, that there is no minimal model (w.r.t.

ABox) in which both c1I and c2I have rank 0 (otherwise, joe would both be an A and a

C, which is inconsistent). In the minimal models of K either c1I has rank 0 and c2I has

rank 1, or vice-versa. (A⊔C)(joe) holds in all the minimal models of K (according to

Def. 2).

7 Extending the correspondence to more expressive logics

As we have seen, the definition of the rational closure can be extended to expressive

logics such as SHOIQ [28] and SROIQ [27], provided ABox is considered in the

construction of the rational closure of TBox (which makes the definition in Section 4

different from [19, 20]). A natural question is whether the correspondence between the

rational closure construction and the minimal canonical model semantics of the previ-

ous section can be extended to stronger DLs. In the general case, we can see that this

is not possible already for SHOIQ. As we have seen, the results on the rational exten-

sion of SHIQ in Section 2 and on the minimal model semantics in Section 3 extend

to more expressive logics. In particular, by Proposition 2, subsumption in SHOIQR
T

(resp. SROIQR
T) can be polynomially encoded in SHOIQ (resp. SROIQ) and

used to compute the rational closure. However, Propositions 11 (existence of a minimal



canonical model) and 13 do not hold for more expressive logics. Due to the presence of

nominals and their interaction with number restrictions, a consistent SHOIQ knowl-

edge base may have no canonical model (whence no minimal canonical ones). Consider,

for instance, the following example:

Example 4. Consider the knowledge base K = (T ,A), where A = ∅ and

T = {{mary} ⊑≤ 2 has friend−.Person , ¬{mary} ⊑ ∃has friend .{mary},
T(Student) ⊑ Young}

According to TBox, Mary is friend of at most 2 persons. Furthermore, all elements in

the model which do not correspond to Mary are in the relation hasFriend with Mary.

Clearly, the models of K cannot contain more than three elements in their domain

(including the interpretation of mary). Observe that the knowledge base K is con-

sistent and the concepts Student ⊓ Young , Student ⊓ ¬Young , ¬Student ⊓ Young

and ¬Student ⊓ ¬Young are all satisfiable in K . However, there is no model for K

which might satisfy all of the above four concept, as any model of K contains at most

three domain elements. Hence, there is no canonical model for the knowledge base K

above. Indeed, the property of existence of a (minimal) canonical model fails to hold

for SHOIQ knowledge bases.

The notion of canonical model as defined in this paper is, therefore, too strong to charac-

terize rational closure for logics as expressive as SHOIQ. However, if we consider the

rational closure construction of K above, the inclusion T(Student ⊓Tall) ⊑ Young

would belong to the rational closure, as rank(Student ⊓ Tall ⊓ Young) = 0 < rank

(Student ⊓Tall ⊓ ¬Young) = 1, which is perfectly reasonable, as we want to con-

clude that typical tall students are young. The fact that there is no canonical model for

K does not impair, in this case, the significance of the rational closure of K . In other

cases, however, the rational closure construction may be not adequate to deal with a

SHOIQ knowledge base.

Consider again Example 3 above, but replacing the assertions CS(c1), B(c2) in

ABox with the inclusions: {c1} ⊑ CS and {c2} ⊑ B. The rational closure construction,

in this example, would assign rank 0 to all atomic concepts as well as to concepts {c1}
and {c2}, although there is no model of K at all in which both c1I and to c2I have

rank 0. In this example, the rational closure of K is inconsistent, as it contains both

T({c1}) ⊑ ∀taught .A and T({c2}) ⊑ ∀taught .C (and, clearly, T({c}) ≡ {c}).

We must observe, however, that to determine if a query F belongs to the rational

closure of K , the rational closure construction does not need to check the exceptionality

of all the concepts in the KB, but only of the concepts C occurring in F or in T(C) on

the left hand side of some defeasible inclusion in K . In the example above, rational

closure does not compute the rank of {c1}, unless {c1} occurs in F . This observation

motivates the definition of an alternative semantics for rational closure, the T-minimal

model semantics introduced in [23] to deal with the inadequacy of the canonical model

semantics in a language with nominals. Although such a semantics was introduced for

the rational extension of SROEL(⊓,×) [34] (at the basis of the OWL EL ontology

language), it could be adopted for expressive DLs as well. It weakens the requirement

on canonical models as “only for the concepts C such that T(C) occurs in the KB K

(or in the query), an instance of C is required to exist in the model, when C is satisfiable



in K” [23]. In Examples 4 and 3 above, the T-minimal models of K exist and give the

same ranks to concepts as the rational closure, when excluding nominals.

The T-minimal models allows to capture the meaning of the rational closure in

cases when minimal canonical models do not, nevertheless there are KBs with multiple

T-minimal models or no T-minimal models (we refer to [23] for examples). The syn-

tactic condition that nominals should not occur in the scope of T in the KB and in the

query (and the same holds for all concepts equivalent to some nominal), is not sufficient

to fill the mismatch between the T-minimal model semantics and the rational closure

as the rational closure construction checks the exceptionality of each concept ’per se’,

and it does not take into consideration the general constraints in the KB. This mismatch

is already evident in SROEL(⊓,×)R
T from the fact that computingT-minimal entail-

ment is a ΠP
2 -hard problem [23] while computing the rational closure is in P as rational

entailment |=sroelrt can be polynomially encoded into Datalog [24].

Consider the following KB K ′ = (T , ∅) in SROIQR
T, where T = {T(A) ⊑ C ,

T(B) ⊑ D , ∃U .C ⊓ ∃U .D ⊑ ⊥} and U is the universal role. The rational closure of

K ′ assigns rank 0 to both A and B, but there is no model of K ′ containing both an A

element and a B element. In the minimal models of K ′, either A has rank 0 and B has

no rank, or vice versa. In particular, K ′ has no T-minimal models.

Given the examples above, we cannot expect that for any KB the rational closure

might always provide reliable consequences. A natural way of identifying those KBs

which are suitable for defining the rational closure is to check for the existence of a

model M of the KB whose rank assignment is coherent with the rank assignment of

the rational closure, in the following sense: (1) kM(C) < kM(D), for all concepts C,

D such that rank(C) < rank(D) and (2) kM(C) = kM(D), for all concepts C, D

such that rank(C) = rank(D). This consistency check would exclude, for instance the

knowledge base K ′ above, as there is no model of K ′ in which both A and B have

rank 0, while it would accept the KBs in Examples 4 and 3 as suitable for defining the

rational closure.

Verifying the existence of a model of a knowledge base K coherent with the rank

assignment of the rational closure is not immediate and can be done by checking the

satisfiability of a KB KL obtained form K by adding the following inclusions (where

L0, . . . , Ln are new concept names, for n the maximum rank < ∞ in the rational

closure construction): L0 ≡ ⊤, Li ⊑ Li−1, Li ⊑ ¬T(Li−1) and

A ⊑ T(⊤), for all concepts A such that rank(A) = 0;

A ⊑ T(Li), for all concepts A such that rank(A) = i.

These inclusions enforce conditions (1) and (2) above. Nevertheless, a correspondence

between the rational closure and a minimal model semantics for the KBs which satisfy

the consistency check above is still to be developed and requires further investigation.

Due to the considerations above, we can regard the correspondence result forSHIQ
only as a first step in the definition of a semantic characterization of rational closure for

expressive description logics. The correspondence between T-minimal models and the

rational closure has to be investigated both for low complexity and for expressive DLs,

possibly identifying more restricted fragments of the language for which the rational

closure construction provides reliable information. Further refinements of the seman-



tics and of the rational closure construction might be needed to deal with knowledge

bases as K ′ above. We leave this investigation for future work.

8 Related Works
As mentioned in the Introduction, in the literature there are many proposals of non-

monotonic extensions of description logics [38, 1, 10, 12, 15, 18, 30, 4, 16, 3, 6, 37, 33,

31, 5, 2]. In the following we mostly restrict our discussion to approaches explicitly

dealing with defeasible inclusions and we refer to [18, 21] for further comparisons.

In [16, 18], nonmonotonic extensions of DLs based on the T operator have been

proposed. In these extensions, focused on the basic DL ALC, the semantics of T is

based on preferential models [32] without requiring modularity. Nonmonotonic infer-

ence is obtained by restricting entailment to minimal models, where minimal models

are those minimizing the interpretation of ¬✷¬C concepts. This notion of minimal

model semantics has strong relation with the semantics of circumscriptive KBs [3] and

the complexity of minimal entailment is already CO-NEXPNP for ALC [18]. In this

work, we have presented an alternative notion of minimal model semantics, in which

the notion of minimality is independent from the language and is only determined by

the relational structure of models. Under this notion of minimality, the complexity of

minimal entailment drops to EXPTIME for both ALCR
T and SHIQR

T.

The first notion of rational closure for DLs was defined by Casini and Straccia in

[6], based on the construction proposed by Freund [13] for propositional logic. In [5] a

semantic characterization of a variant of the rational closure in [6] has been presented.

The major difference between our construction and those is [6, 5] is in the notion of

exceptionality: our definition exploits preferential entailment, while [6, 5] directly use

entailment in ALC over a materialization of the KB. In this paper we have shown that,

under the condition that the T operator only occurs on the left hand side of defeasible in-

clusions in a SHIQR
T knowledge base, the rational closure of TBox can be computed

using entailment in SHIQ and the rational closure construction requires a quadratic

number of calls (in the number of typicality assertions in the KB) to a SHIQ reasoner.

It is well known that rational closure has some weaknesses that accompany its well-

known qualities. Among the weaknesses is the fact that one cannot separately reason

property by property, so that, if a subclass of C is exceptional for a given aspect, it is

exceptional tout court and does not inherit any of the typical properties of C. Among

the strengths of rational closure is its computational lightness, which is crucial in De-

scription Logics. To overcome the limitations of rational closure, in [7, 9] an approach

is introduced based on the combination of rational closure and Defeasible Inheritance

Networks, in [8] the lexicographic closure introduced by Lehmann [36] is extended to

ALC, and in [25] a refinement of the semantics of rational closure has been developed,

where models are equipped with several preference relations. The approach in [38],

based on default inheritance reasoning and on the use of specificity to resolve conflicts

among defaults, also avoids the “all or nothing” problem of rational closure. However,

computing an extension (or deciding if there is an extension) is shown to be NP-hard

already for tractable DL fragments.

A new non monotonic description logics, which also deals with the above men-

tioned problem, is DLN [2], which supports normality concepts and enjoys good com-

putational properties. In particular, DLN preserves the tractability of low complexity



DLs, including EL⊥++
and DL-lite. The logic incorporates a notion of overriding,

namely the idea that more specific inclusions override less specific ones. A difference

with rational closure is that, in case there are unresolved conflicts among defeasible in-

clusions with the same preference, in DLN inheritance is not blocked and the conflict

is made explicit through the inconsistency of some normality concept. This happens,

for instance, in the Nixon diamond (see Example 9 in [2]), where the normality concept

NRepQuaker (representing the prototypical republican quakers) can be inferred to

be inconsistent, showing an unresolved conflict between the two defeasible inclusions

Quaker ⊑n Pacifist and Republican ⊑n ¬Pacifist . In this example, in the rational

closure construction the concept T(Quaker ⊓ Republican) is not inconsistent but it

does neither inherits the properties of typical Quakers nor those of typical Republicans

(as rational closure assigns rank 1 to Quaker ⊓Republican , while rank 0 to Quaker

and to Republican). We can observe, however that rational closure is not always able

to accommodate conflicts by blocking inheritance, and in Section 7 we have seen exam-

ples in which the rational closure is inconsistent as well.

Recent works discuss the combination of open and closed world reasoning in DLs.

In particular, some combinations of DLs with LP languages have been proposed, for

instance under the answer set semantics and the well-founded semantics in [12, 11],

under the MKNF semantics [37], as well as in Datalog +/- [26]. In [31] a general DL

language is introduced, which extends SROIQ with nominal schemas and epistemic

operators as defined in [37], and encompasses some of the most prominent nonmono-

tonic rule languages (including Datalog under the answer set semantics). A grounded

circumscription approach for DLs with local closed world capabilities has been defined

in [33]. In [23] the T-minimal model semantics is introduced to strengthen rational

entailment for SROEL(⊓,×)R
T KBs, and Answer Set Preferences are used for rea-

soning under minimal entailment. Rational closure and its relations with the T-minimal

model semantics are not studied in [23].

9 Conclusions
In this paper we have studied an extension of the rational closure defined by Lehmann

and Magidor to the Description Logic SHIQ, for knowledge bases containing typi-

cality inclusions of the form T(C) ⊑ D. Extending the semantic characterization of

rational closure to a logic like SHIQ, which does not enjoy the finite model property

[29], rises new problems with respect to the case of ALC studied in [21], for which the

finite model property holds. We have shown that in all minimal models of a finite KB

in SHIQ the rank of domain elements is always finite, although the domain might be

infinite, and we have exploited this result to establish the correspondence between min-

imal models under the canonical model semantics and the rational closure construction

for SHIQ. We have proved an EXPTIME upper bound for reasoning with the rational

closure and shown that the rational closure of a TBox in SHIQR
T can be computed

using entailment in SHIQ, showing that, for the knowledge bases in which the typi-

cality operator can only occur on the left hand side of typicality inclusions, entailment

in SHIQR
T can be reduced to entailment in SHIQP

T which, in turn, has a linear

encoding into entailment in SHIQ.

A more general rational closure construction for dealing with KBs allowing for

arbitrary occurrences of the typicality operator has not been studied so far. As already



observed (see Section 7), for arbitrary KBs Proposition 2.8 would not work but, to

exploit the linear encoding to SHIQ, a definition of rational closure in this case could

be given using preferential entailment rather then rational entailment. However, the

correspondence with the preferential semantics (if any) might then become less direct.

The rational closure construction can be applied in principle to more expressive de-

scription logics. However, we have seen in Section 7 that the semantic characterization

developed for ALC and SHIQ cannot be directly extended to stronger logics, such

as SHOIQ or SROIQ, as the notion of canonical model is too strong to deal with

nominals and with the universal role. Even if the T-minimal model semantics allows to

capture a larger set of KBs, and we can check for the existence of a model of the KB

which is coherent with the rank assignment in the rational closure, further investigation

is needed to provide a semantic characterization of rational closure for more expressive

description logics.

To address the weakness of rational closure mentioned in Section 8 and to avoid the

“all or nothing” problem, in [25] a finer grained semantics where models are equipped

with several preference relations is considered, which is shown to correspond to a re-

finement of the rational closure semantics. The extension of the rational closure con-

struction to accommodate this refinement is left for future work.
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